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Abstract-Two-dimensional convective flows in tall cavities with adiabatic or conducting horizontal 
boundaries and driven by differential heating of the two vertical sidewalls, are studied numerically over a 
range of Rayleigh numbers and Prandtl numbers. By using a Dufort-Frankel-Multigrid method, numerical 
results for the relevant end-zone problems in the limit of large aspect ratio are obtained for a range of 
Rayleigh numbers from A = 500 to 70000 and for different Prandtl numbers 6. The flow patterns show 
that the parallel flow in the core region is destroyed at A, x 78800, in good agreement with stability 
analysis. Nusselt number predictions are compared with those of previous numerical and experimental 

studies of the overall cavity flow. 

1. INTRODUCTION 

IN THIS paper, two-dimensional flows driven by hori- 
zontal temperature gradients in a tall cavity with adia- 
batic or conducting boundaries at the top and bottom 
are considered. The theoretical description of the flow 
in a vertical slot, based on the Boussinesq approxi- 
mation, began with the analysis of the conductive 
regime by Batchelor [l]. The transfer of heat across 
the cavity by pure conduction leads to a horizontally 
stratified vertical core flow with a cubic velocity profile 
corresponding to upward motion in the hotter half of 
the slot and downward motion in the cooler half. It 
has been shown (Vest and Arpaci [2], Korpela et al. 
[3], Bergholz [4]) that the flow is unstable to travelling 
waves for fluids of Prandtl number 0 > 12.7 and to 
stationary cells for r~ < 12.7. The critical value of the 
Rayleigh number for stationary instability in the form 
of transverse rolls is 

A, z 7.88 x 103a. 

Here A is the Rayleigh number based on cavity width 
and this result is valid for almost the entire range of 
Prandtl numbers 0 > 0 (Vest and Arpaci [2]). This 
result is of crucial significance in the description of 
the base flow in the vertical slot, for when A > A, 

the conductive core solution will be destroyed by an 
imperfect bifurcation associated with the penetration 
of cells from the end-zones of the slot (Daniels [5]). 
However, for A < A,, the structure of the flow in the 
limit of large vertical aspect ratio, H+ co, has two 
main parts: a parallel flow in the core region, and 
nonlinear convective flow near the ends of the slot 
where the flow must be turned. The end-zone problem 
first formulated by Daniels [5] contains two 
parameters, A and r~, instead of the three-parameter 
problem considered in numerical simulations of the 
full slot flow by, for example, Lee and Korpela [6]. 

Daniels discussed various analytical features of the 
end-zone problem. In particular, it was argued that 
the break-down of the conductive regime is associated 
with the inward penetration of nonlinear convective 
effects from the end-zones. At finite and small Prandtl 
numbers this takes the form of an imperfect bifur- 
cation at the critical value of the Rayleigh number, 
A,, leading to the establishment of a multiple-roll state 
throughout the slot. For infinite Prandtl number there 
is a more gradual penetration in which the vertical 
extent of the end-zones expands as A --t co, the end- 
zones eventually filling the entire slot when A = O(H), 

and leading to the so-called convective regime studied 
using boundary-layer techniques by Daniels [7]. For 
the conductive regime where A = O(1) relatively little 
is known of the detailed flow structure in the end 
regions, where the full Oberbeck-Boussinesq equa- 
tions apply. The cavity is assumed to have thermally 
conducting or insulating horizontal boundaries and 
the centro-symmetry of the overall flow (Gill [8]) 
implies that the solution for only one of the end 
regions needs to be considered. 

Here, for the conducting case, complete numerical 
solutions of the nonlinear end-zone problem are 
obtained for Rayleigh numbers, A, ranging from 500 
to 9000 and for a Prandtl number 0 = 0.733 equi- 
valent to that of air. For the adiabatic case, numerical 
results are obtained for a wide range of Rayleigh 
numbers, up to 70 000, and for Prandtl numbers cor- 
responding to air (0 = 0.733) and water (g = 6.983). 

Section 2 describes the mathematical formulation 
of the tall cavity flow, and the core solution in the 
limit as H -+ CO is given in Section 3. The end-zone 
problem is also formulated and in Section 4 an efficient 
numerical scheme of solution is outlined, based on 
the Dufort-Frankel-Multigrid method, using a finite 
difference technique. Heat transfer is discussed in 
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NOMENCLATURE 

h height of cavity 

1 length of cavity 
H aspect ratio of cavity, h/l 

Nu Nusselt number 
A Rayleigh number 

‘4, critical Rayleigh number 

T* dimensional temperature 

7, T non-dimensional temperature 
x*, Z* dimensional coordinates 

s. : non-dimensional coordinates 

Ll*. M’* dimensional velocity components. 

Greek symbols 
wavenumber 

; coefficient of thermal expansion 
K thermal diffusivity 

\’ kinematic viscosity 

(7 Prandtl number 

6. i non-dimensional stream function 
6. 01 non-dimensional vorticity function. 

Section 5. The numerical results and a comparison are 
with theory given in Sections 6-8. 

s = 0,l . (9) 

2. FORMULATION 
7 = 0 on .V = 0. 

The slot is defined by the region 0 < .r* < I, 
(10) 

0 d Z* < h, with the vertical sidewalls .Y* = 0 and T= I on .Y= I. (1 I) 

.x* = I maintained at constant temperatures T,, and 

T,+AT, respectively. Non-dimensional variables of 
In the insulating case, the horizontal boundary con- 
ditions arc 

temperature, velocity, length and time are defined by 

7’* = T,+AT@,;, t), (1) z = 0, H. (12) 

ti(U, I?) 
(u*,u.*) = ~. ~~ 

1 . 

(SC*. I’ *) = I(& z). (3) while if the horizontal surfaces are conducting, 

where K is the thermal diffusivity. 

By introducing a stream function $ such that 

the governing equations, subject to the Boussinesq 

approximation, can be written in non-dimensional 
form as 

vlj = --6, (6) 

(7) 

on : = 0, H. (14) 

T= .Y on : = O.H. (15) 

where H = h/l is the vertical aspect ratio of the slot. 
As noted by Gill [S] the above equations and bound- 

ary conditions allow solutions which possess the 
centrosymmetry properties : 

I&Y.:, 1) = $(l -..y, H-z. I) 

~(_~.~,I)= I-?=(I-.u.H-z,t) (16) 
CG(.Y, z. I) = G(1 -..y, H-r. I) : 

so that in general for the steady-state solution only 
half of the flow domain needs to be considered; the 
motion is controlled by the three parameters cr. 11 and 
I-I. 

where the Prandtl number n and the Rayleigh number 
A are defined by 3. CORE SOLUTION AND END-ZONE 

STRUCTURE 
1’ 

(T= 
IC * 

A = .gy~’ 
(8) til’ 

The flow in the slot is characterised by several 
different regimes which are identified by the relative 

and CT, is the vorticity. Here v is the kinematic viscosity, sizes of the Rayleigh number A and the aspect ratio 

p is the coefficient of thermal expansion and g is the H, the latter being assumed large. The regime of inter- 

acceleration due to gravity. est here is that where A is 0( 1) when the steady-state 

The boundary conditions on the vertical sidewalls core flow throughout most of the slot is the conductive 



Thermal convection in tall laterally heated cavities 371 

(4 W 

3. 

2. 

2. 

1. 

1. 

I 

0.6 

2.09 

I .5a 

(4 

3. 

2. 

2.0 

1. 

1 .o 

0. 

0. I 

FIG. 1. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for the 
conducting case with (r = 0.733 and A = 500, using a 30 x 90 computational grid with z, = 3. 
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FIG. 2. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for the 
conducting case with (r = 0.733 and A = 5000, using a 25 x 175 computational grid with z, = 7. 
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FIG. 3. Contours of the steady-state solution for (a) stream function, (b) vorticity. (c) temperatul-c. I‘or the 
conducting case with 0 = 0.733 and A = 7000. using a 25 x 17.5 computational grid with z, 7. 

solution This solution. originally given by Batchelor [I]. is 

r= T,(Y), IJ = AF(s), (0 < r < N). (17) 
actually an exact solution of the full equations (5) 
(7) representing an anti-symmetric vertical motion 

where with fluid ascending in the hotter half of the slot (I > 4) 
and descending in the cooler half (.u < 1). Near the 

T,(.Y) = x, F(r) = (18) ends of the slot the fluid must bc turned and the 

solution (17) is clearly invalid. Since the overall 
motion can bc assumed centro-symmetric only the 
solution at the lower end of the slot needs to be con- 
sidered. and it is clear that if A is of U( I). the motion 

in an end-zone defined by 0 i .Y d I. 0 < z < r will 
-2.6 

* :A = 7000 be governed by the steady-state version of the full 
-2.4 

^ .1 -innn 
” ” - 0”“” 

nonlinear Boussinesq equations (5) -(7). It is con- 

x A =x000 
venient computationally to consider the time-depcn- 

A : A = 500 
dent equations, so the local solution in the end-zone 

is written 

-2.2. 

-2.o_ 

-1.8.. 

-1.6_ 

-1.4_ 

-1.2_ 

-1.0. 

-0.K 

-0.6. 

-0.4_ 

T== T(.Y.:.r)+ .” 

I/;= I/J(.Y.r.[)+ ,.. % 
(H--t % ), (I’)) 

Cc = CJ(.Y. Z, t) + 

and then T. I) and w satisfy 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.4 1.0 

X vzt/J = __(I), (21) 

iT 
?; +J(T.$) = V’T. (32) 

FIG. 4. The local Nusselt number ~IT/~z[._,~ with v = 0.733 
for difl’erent Rayleigh numbers on the bottom wall tar the 

conducting case. 
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FIG. 5. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for the 
insulating case with d = 0.733 and A = 500, using a 30 x 90 computational grid with z, = 3. 

The boundary conditions on the rigid cavity walls are 

*+o, z = 0, 

*+0; x = 0, 1, 

T=O, x=0; T=l, x=1, 

and for the insulating case, 

l3T 
- = 0, 
az 

z = 0, 

or for the conducting case, 

T=x, z=O. 

Also as z + cc it is required that 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

in order that the solution matches smoothly with that 
in the core. It is seen that the end-zone problem (20)- 
(28) is controlled by two parameters, the Rayleigh 
number A and the Prandtl number 0 and that for 
general values of these parameters in the range A > 0, 
0 > 0 a numerical solution is required. This is dis- 
cussed in the next section. 

4. NUMERICAL APPROACH FOR THE 

END-ZONE PROBLEM 

In order to solve the system (20)-(28) numerically, 
a finite difference method is considered. In recent 

years, a scheme called the Dufort-Frankel method, 
as outlined in ref. [9], has been used frequently for 
evolution equations. Like Crank-Nicolson and 

Peaceman-Rachford methods, it has second-order 
accuracy but since it is an explicit method, it must meet 
the Courant condition to achieve numerical stability. 
Although the size of the time step is restricted by this 
condition, it is still a very effective and fast method. 
For elliptic equations, a five-point scheme can be 

adopted in which centred differences are used to 
approximate the original partial differential equation. 

Based on this, a new algorithm has been developed 
recently, called the Multilevel method (Brandt [lo]). 
This is based on the five-point scheme and Successive 
Over-Relaxation, both widely used for this kind of 
elliptic equation. The main idea is to use the solution 
on a coarse grid to revise the required solution on a 
fine grid. It has been proved theoretically and prac- 
tically that the Multigrid method has more advantages 
than other methods, as it has a better rate of con- 
vergence. Here we do not give a full theoretical analy- 
sis of the algorithm, which is described in detail by 
Brandt [lo]. 

Here the Dufort-Frankel method is used to solve 
the evolution equations (20) (22) and the Multilevel 
method to solve the Poisson equation (21). The outer 
form (28) at z = co is handled by a finite truncation 
of z so that the condition 

T= T,(x), II, = M(x), (29) 

is applied in the computational domain at z = z, < co. 
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(a) (b) 

FIG. 6. Contours ofthe steady-state solution for (a) stream t’unctlon, (h) vorticity, (c) temperature. for the 
insulating case with 0 = 0.733 and A = 3000. using a 25 x I75 computational grid with IT, == 7. 

It is then necessary to ensure that zX is chosen suhi- 
ciently large that the computed solution does indeed 
approximate the actual solution of (20)-(28). 

Some guidance on the choice of the outer boundary 
zX, is provided by results of an eigenvalue analysis of 
the outer condition (28) by Daniels [5]. This shows 
that the outer forms T, = s and AF(x) are approached 
generally through a behaviour of the form 

T - .u+O(e ‘I’). $ - 4{F(.x) +O(ee”‘)) (30) 

as I --f X’ where, for A < A,, the leading eigenvalue p 
has positive real part and for infinite Prandtl number 
varies from the value 7~ at A = 0 to zero as il + X. 

with 

/l-2.58x 1014 ’ (A--t cc,) 

(Daniels [5]). This latter result indicates an e-folding 
decay length for the end-zone of z - 3.88 x 10 4A so 

that for large values of A, the outer boundary of the 
computational domain must be increased accordingly. 

The main interest is in the steady-state solution 
and the computation is stopped when the maximum 
difference between values of the solution at successive 
time steps is less than a specified tolerance. usually 
taken to be IO me for the temperature and vorticity 
fields. More details of numerical techniques involved 
in solving the whole system and of the effect of the 
grid size on the accuracy of solutions are discussed by 

Wang [I 11. 

5. HEAT TRANSFER 

The end-zones of the cavity play an important role 
in providing a correction to the conductive heat trans- 
fer associated with the core solution (17). The average 
heat flux for each wall of the end-zone is represented 

by 
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FIG. 7. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for the 
insulating case with CT = 0.733 and A = 7000, using a 25 x 175 computational grid with z, = 7. 

/j=j;(&l)d;, x= 1, (32) anduseof(28)yie1ds 

I -I 
p-a-y =& (35) 

’ aT 
Y= 0 az ._=o 

dx, z=o, (33) 
This relation can be used as a check on the accuracy 

where CL and fi represent contributions relative to a 
of the computation. Simpson’s rule is used to calculate 

state of pure conduction. In the conducting case, inte- 
the integrals (31)-(33). 

gration of the energy equation (22) for steady-state 
In the insulating case, y = 0 and the equation (35) 

motion in the end-zone and use of the boundary con- 
becomes 

ditions (24) gives /+$ (36) 

~(~l..--l)d~-~(~~~_~-l)dz 
Again, this relation can be used as a check on the 
accuracy of the computational solution. In addition, 
the values of LY and j?, together with the centro- 
symmetry of the flow, can be used to provide the 
overall Nusselt number for the cold wall of the cavity 

= A 
S’ 

F(x) 2 dx (34) 
0 

* aT 
Nu = - s I D ax x=0 

dz. (37) 
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FIG. 8. The profiles of (al skin friction and (b) tempwatul-e with ci = 0.733 for difl‘erent Kayleigh nt~mbers 
on the bottom wall for the insulating cast. 

This integral comprises three parts, arising from the 
main core contribution. where (17) applies. together 
with the convective corrections arising from each end 
zone. Thus 

but for a centro-symmetric steady-state solution Ihc 
third integral evaluated within the upper end-zone can 
be replaced by an integral over the hot wall of the 
lower end-zone. Thus 

6. NUMERICAL RESULTS FOR AIR IN THE 

CONDUCTlNG CASE 

Numerical results were obtained for a Prandti num- 
ber (T = 0.733 equivalent to that of air and for a range 
of Rayleigh numbers 500 < A < 9000. For low Ray- 
leigh numbers a 30 x 90 grid was used with an outer 
boundary Z, = 3, while for higher Rayleigh numbers. 
(A > 3000), a 25 x 175 grid was used with an outer 
boundary 2, = 7. In the numerical solution for low 
Rayleigh numbers it is relatively easy to achieve good 
accuracy and fast convergence to the steady state solu- 
tion. At higher Rayleigh numbers accuracy is affected 
mainly by the formation of boundary layer structures 

near the walls and although accuracy can be improved 
by use of a finer grid, the smaller time step needed to 
maintain stability affects the rate of convergence. In 
general it is necessary to make a compromise in the 
choice of grid size and more sophisticated numerical 
techniques would be needed to [real the boundary 
layer structures which arise a~ very high Rayleigh 
tiitnlbct-s. 

Contours of the steady state stream function. vor- 

ticity and temperature for different Rayleigh numbers 
arc given in Figs. l-3. These contours indicate that at 
low Rayleigh numbcra (A = 500). the core solution is 
valid throughout most of the cavity cxccpt in roughly 
square areas near the ends where the flow turns direc- 
tion. As the Rayleigh number increases. the non- 
linearity of the end-zone flow gradually spreads vcr- 
tically. and non-parallel flow occurs over an extended 
I-ange of :. typically 0 < r i 4 when .I = 5000 (Fig. 
3). At high Raylcigh numbers (,Z z 5000) the tem- 
pcraturc ficld shows evidence of the dcvclopment of a 
~~~~~tnd~try-l~~yer structure at the lowct- corner near the 
hot wall, which acts as a strong $ourcc of vorticity. 
Since buoyancy forces are proportional to the hori- 
/ontaI temperature gradient, this region produces vig- 
orous convection up the hot wall. with most 01’ the 
tcmperaturc variation occurring near the wall. Across 
the base region of the cavity. the isotherms arc 
detlcctcd towards the hot wall, indicating a tendency 
to align with the flow, characteristic ofdomination by 
convection in this part of the tlo~v. 

l;igure 3 shows that when A == 7000 a multiple-cell 

structure begins to appear in the streamline iield which 
2x1 ,t = 9000 has developed to the stage where the 
outer boundary condition can no longer he applied 
consistently. These results arc in good agreement with 
linear stability theory based or1 the breakdown of the 
~nrallel core flow. Small disturbances T and tr of 
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arbitrary two-dimensional form are superimposed 
upon the basic state in the following manner : 

T=x+F, $=A(F+ii;). (391 

The general solution of the linearised stability equa- 
tions can then be written as a superposition of Fourier 
modes which for stationary convection take the form 

(&x, ~1, Qx, 2)) = (#@I, &.+I) exp (W (401 

where di is the vertical wavenumber. Thus 

T = x+0(x) exp (Gz), (41) 

$ = A(F+&x) exp (ioiz)), (42) 

where, from (20)-(22), 0 and Q, satisfy 

~-~28 = -i&AF’d, (43) 

4w_2gizq+$4 = 0’ 

i&A 
- -; {(-““*F’-F”‘)#b+F@‘). (44) 

From (24), (25) the appropriate boundary conditions 

(a) (f-3 

012 0:4 016 0;s 

are 

@=$=@=O on x=0,1. (45) 

The system (43)-(45) has been previously con- 
sidered by Vest and Arpaci [2], Hart [12], Korpela et 

al. 131. Bergholz [4] and more recently by Daniels [5]. 
Real values of the wavenumber, corresponding to 
multi-cellular convection, occur for Rayleigh numbers 
A > ta,(~) where A, x 7880~~ and the corresponding 
critical value of the wavenumber is & z 2.8. As 
explained by Daniels [S], the multi-cellular motion is 
actually forced to occur as part of the steady state 
solution in the end-zone, since the eigenvalue cor- 
responding to ji, is one of the infinite family of eigen- 
values generated by the need for the end-zone solution 
to adjust from the parallel core flow to the boundary 
conditions (23)-(27). 

The appearance of secondary vortices at A = 7000 
in Fig. 3 is consistent with the fact that A, = 5776 
when cr = 0.733 and the wavelength z z 2 is reason- 
ably consistent with the critical wavelength 
2a/& = 2.24 predicted by the linear stability analysis. 
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FIG. 9. Contours of the steady-state solution for (a) temperature, (b) vorticity, near the bottom of the slot 
for the insulating case with cr = 6.983, A = 30000 and z, = 30. 
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The local Nusselt number on the bottom wall is 
shown for various values of the Rayleigh number in 
Fig. 4. 

7. NUMERICAL RESULTS FOR AIR IN THE 

INSULATING CASE 

Numerical results were obtained for air ((r = 0.733) 
for a wide range of Rayleigh numbers, equivalent to 

the range for the conducting cast considered in the 
previous section. The grid sizes and the outer bound- 
aries were the same as those described in the previous 
case, and the accuracy and convergence of the solu- 

tions followed a very similar pattern. The steady-state 
flow patterns arc illustrated in Figs. 5-7 by contours 
of stream function, vorticity and temperature for Ray- 
leigh numbers ranging from 500 to 7000. As expected. 
the transition from conductive flow at low Rayleigh 
number to convective flow at high Rayleigh number 

is similar to that observed in the case of conducting 
boundaries, except near the base where the isotherms 
arc free to shift towards the hot wall, convected by 

3.00 

2.50 

2.00 

1.50 

1.00 

0.50 

0.00 
I 

1 , I , I , I ) 1 

0.4 0.8 

FIG. IO. Contours of stream function near the bottom of the 
slot for the insulating case with B = 6.983, A = 40000 and 

z, = 50. 

the turning motion of the fluid. The streamlines sho\c 
that at A = 500, the flow pattern is nearly symmetric. 
but at higher Rayleigh numbers there is asymmetry 
caused by the accentuated upv+ard motion near the 
hot wall. associated with the formation of a thermal 

boundary layer there. The vorticity tields also shob 
that strong horizontal vorticity gradients arc set up 
near the hot wall resulting in vigorous convection 
there. When A reaches the critical Raylcigh number- 
/I / 2 7X800 (see Fig. 7), the parallel How approaching 
the core is replaced by multicellul;~r convection. as 
in the computations of the previous section anti the 

wavelength is again consistent with that predicted hq 
the linear stability theory. The end-Tone solution can 
no longer bc treated in isolation. the outer boundary 
condition (2X) is inconsistent. and ;I multiple-cell 

structure occurs in the whole slot. Figure X sho\\s 

the skin friction and temperature on the bottom wall. 
indicating how asymmetry dcvelopc as the Raylcigh 
number increases. This behaviour is consistent with 
the change of the flow pattern observed in Figs. 5 7. 

the skin friction maximum and the thermal pradicnt 
shifting considerably towards the hot ~vall. 

FIG. II. 

60 .O, 

56.0, 

52.0, 

48 .O. 

44.0. 

Streamlines near the top of the end-zone for I 
insulating case with D = 6.983. 

he 
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Table 1. Comparison of the two sides of equation (36) for 8. NUMERICAL RESULTS FOR WATER IN THE 
air INSULATING CASE 

A 8-a A/720 Discrepancy 
-_ 

500 0.691 0.694 0.003 
3000 4.092 4.167 0.075 
5000 6.75 6.955 0.194 

On the cold wall, the local Nusselt number increases 
in the z direction, and decreases as A increases. A 
region with a very weak horizontal temperature gradi- 
ent then exists near the corner of the cold wall where 
the heat transfer is relatively small. On the hot Walt, 
there are strong horizontal temperature gradients and 
the heat transfer reaches a maximum value near the 
bottom of the wall and then decreases along the z 
direction. The local Nusselt number for the hot wall 
increases with A, as more heat is transferred into the 
upward-moving fluid. Most of this heat is conveyed, 
via the core, to the end-zone at the top of the cavity, 
where it leaves through the cold wall. This process is 
represented by the steady-state integral of the energy 
equation o-cc = A/720 obtained in (36) the right- 
hand side being a measure of the heat flux conveyed 
through the core region. This result was used to test 
the accuracy of the numerical computations, as 
shown in Table 1. This shows good consistency and for 
higher Rayleigh numbers the discrepancy increases 
as it becomes more difficult to adequately resolve the 
solution. 

Numerical results were obtained for water 
(g = 6.983) for a wide range of Rayleigh numbers 
varying from 500 to 70000. The outer boundaries 
used in the computations varied from 3 to 60, and 
various grid sizes were used according to the value of 
the Rayleigh number. Unlike the case of air, much 
higher Rayleigh numbers were considered here, so 
that much larger outer boundaries were needed and 
grid sizes ranged from 30 x 90,25 x 175 and 18 x 280 to 
12 x 600. Most of the computations for high Rayleigh 
numbers were based on the use of solutions for lower 
Rayleigh number as the initial states, thereby reducing 
the computational time needed. 

Contours of stream function, vorticity and tem- 
perature, showing some detailed results for the fields 
near the bottom wall are presented in Figs. 9 and 10 
for Rayleigh numbers A = 30000 and 40000, which 
are below the critical Rayleigh number for stationary 
transverse rolls 

A, c 7880a = 55 049 

predicted by linear stability theory. These graphs pro- 
vide detailed information about the flow structure 
of water in the end regions of the cavity ; because 
instability is delayed to much higher Rayleigh num- 
bers when the Prandtl number is large, the nonlinear 
development of the flow can be followed much further 
than for the case of air. 

The overall Nusselt number Nu is obtained from 
(31)-(38) and the numerical results are listed in Table 
2 for three values of the Rayleigh number. The results 
show good agreement with previous numerical cal- 
culations for the whole cavity by Lee and Korpela [6] 
and Raithby and Wong [13], and also compare well 
with the experiments of El Sherbiny et al. [14]. It 
should be noted that the numerical results of the end- 
zone computation for one pair of the parameters A 
and D can be used to provide approximations to the 
Nusselt number for all aspect ratios H provided H is 
sufficiently large for the conductive regime to apply 
in the core. This is a significant advantage of the 
asymptotic method adopted here. 

As the Rayleigh number increases, the region of 
nonparallel flow near the base of the cavity spreads 
upwards and for values of A up to 7000 the flow near 
the base is very similar to that for air shown in Figs. 
5-7. As A increases further the isotherms near the 
lower corner are compressed towards the hot wall 
leading to an almost isothermal retion over most of the 
base and except near the hot wall, the flow near the 
base of the cavity is dominated by convection, For 
A = 30000, where the outer boundary is taken at 
z, = 30, a detailed picture of the flow near the base 
(Fig. 9) shows how the 0.05 isotherm follows the 
streamline pattern before being deflected sharply to 
the bottom boundary in the region z < 0.4. Near the 
hot wall, the region 0.8 < .X < 1, 0 < -7 < 2 shows 

Table 2. Comparison of the average Nusselt number Nu/H on the cold wall as given by (38) with previous 
results for air 

Method Researchers 

Numerical Present study 
Numerical Present study 
Numerical Lee and Korpela [6] 
Numerical Raithby and Wong [13] 
Experimental El Sherbiny et al. [ 141 
Numerical Present study 
Numerical Lee and Korpela [6] 
Experimental El Sherbiny et al. f14J 

A 

500 
3000 
3000 
3000 
3000 

5 

1.031 
1.41 
1.39 
1.40 

I.732 I.366 I.244 
I .62 1.338 1.235 

H 

IO 15 

1.0155 I .0103 
1.205 1.1367 
1.17 1.129 
1.2 

20 40 

f .0077 1.0039 
1.102 1.0512 
1.08 1.043 
1.13 1.045 
1.07 1.01 
1.183 1.0915 
1.165 1 .O& 
1.17 1.04 
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Ftc;. 12. The profiles of (a) skin friction cv!/1 and (b) temperature. with 0 = 6.9X3 for different Rayleigh 
numbers on the bottom wall for the insulating case. 

tightly-packed isotherms indicating strong horizontal 
temperature gradients and the formation of a vertical 
thermal boundary layer. The local heat transfer into 
the system is a maximum near the base of the hot wall. 
The vorticity field shows a complex structure near the 
lower, hot corner and a region of maximum vorticity 
near the hot wall associated with the vertical boundary 
layer. Figure IO shows the streamline pattern for 
4 = 40000. 

When A reaches 60000 the parallel flow region at 
the outermost part of the end-zone becomes sus- 
ceptible to minor oscillations. consistent with a critical 
Rdyleigh number A, z 55 000. The corresponding 
critical wavenumber predicted by linear stability 
theory is d, E 2.8 (Vest and Arpaci [2], Bergholz 
[4]), equivalent lo a wavelength z = 27c,!<< 2 2.24 

between the centrcs of neighbouring, co-rotating 
cells. This compares well with a value of about 2.1 

obtained by the present calculations. At ,4 = 70000 
the multiple cell structure becomes clearly cstab- 
lished along the centre-line of the parallel flow 
region, as shown in Fig. I I. 

Figure 12 shows the skin friction and the tcm- 
perature on the bottom wall. At low Raylcigh number 
(A = 500) the temperature profile is approximately 
linear and as A increases the major variation shifts 
to the neighbourhood of the hot wall, with most of 
the base of the cavity then at the tempcraturc of the 
cold wall. This is consistent with the large Raylcigh 
number structure at infinite Prandtl number proposed 
by Daniels [5, 71. The numerical computations 
described here are broadly consistent with the main 
features of this structure. including the existence of 
an outer zone of vertical extent O(.sI). which allows 
adjustment to the parallel core flow, and a thin hori- 
zontal layer of height O(A I’“) which is dominated 
by convection and feeds fluid into the base of a 
vertical boundary layer on the hot wall. The Prandtl 

number of the computations is actually large but 
finite so as .4 increases the end-zone problem in fact 
no longer has a consistent solution when A exceeds 

AL 2 55 000. 
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